

RTQ2551A-QA

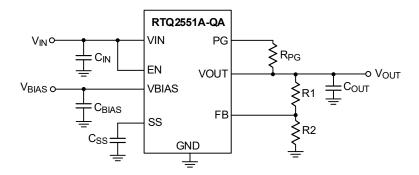
1A Ultra-Low Dropout Voltage LDO Regulators with Soft-Start

1 General Description

The RTQ2551A-QA is a very low dropout linear regulator that operates from an input voltage as low as 0.8V. The device is capable of supplying 1A of output current with a typical dropout voltage of only 50mV. A VBIAS supply is required to run the internal reference and LDO circuitry while output current comes directly from the VIN supply for high-efficiency regulation. User-programmable soft-start limits the input inrush current and minimizes stress on the input power. The enable input and power-good output allow easy sequencing with external regulators. This complete flexibility provides an easy-to-use robust power management solution for a wide variety of applications.

The RTQ2551A-QA is stable with an output capacitor greater than or equal to $2.2\mu F$. A precise reference and error amplifier deliver 1% accuracy over load, line and temperature. Overcurrent limit and over-temperature protection are also included. The RTQ2551A-QA is available in the WDFN-10L 3x3 package.

The recommended junction temperature and ambient temperature ranges are -40°C to 125°C.


2 Features

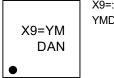
- AEC-Q100 Grade 1 Qualified
- Ultralow VIN Range: 0.8V to 5.5V
 VBIAS Voltage Range: 2.7V to 5.5V
- VOUT Voltage Range: 0.8V to 3.6V
- Low Dropout: 50mV Typical at 1A, VBIAS = 5V
- 1% Accuracy Over Line/Load/Temperature
- Power-Good Indicator for Easy Sequence Control
- Programmable Soft-Start Provides Linear Voltage Startup
- Stable with Any Output Capacitor ≥ 2.2μF
- Overcurrent and Over-Temperature Protection

3 Applications

- PCs, Servers, Modems, and Set-Top Boxes
- FPGA Applications
- DSP Core and I/O Voltages
- Instrumentation
- Post-Regulation Applications
- Applications With Sequencing Requirements

4 Simplified Application Circuit

5 Ordering Information



Note 1.

Richtek products are Richtek Green Policy compliant and marked with ⁽¹⁾ indicates compatible with the current requirements of IPC/JEDEC J-STD-020.

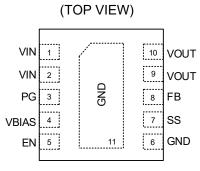
6 Marking Information

RTQ2551AN-QAB

X9=: Product Code YMDAN: Date Code

RTQ2551AN-QABB

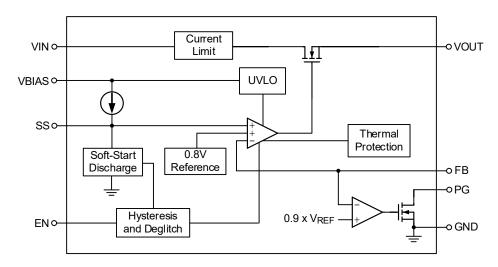
YL=: Product Code YMDAN: Date Code


Table of Contents

1	Gener	al Description	1
2	Applic	cations	1
3	Simpl	ified Application Circuit	1
4	Order	ing Information	2
5	Markii	ng Information	2
6	Pin Co	onfiguration	4
7	Funct	ional Pin Description	4
8	Funct	ional Block Diagram	4
9	Absol	ute Maximum Ratings	5
10	ESD F	Ratings	5
11	Recor	nmended Operating Conditions	5
12	Therm	nal Information	5
13		ical Characteristics	
14	Typica	al Application Circuit	8
15		al Operating Characteristics	
16	Opera	tion	11
	16.1	VIN and VBIAS Supply	11
	16.2	Enable and Shutdown	
	16.3	Output Active Discharge	11
	16.4	Soft-Start	
	16.5	Power-Good Indicator	11
	16.6	Overcurrent Protection	11
	16.7	Over-Temperature Protection	12

17	Applic	cation Information	13
	17.1	Dropout Voltage	13
	17.2	Input, Output, and Bias Capacitor	
		Selection	13
	17.3	Adjustable Output Voltage	13
	17.4	Power Up Sequence Requirement	13
	17.5	Thermal Consideration	14
	17.6	Layout Considerations	14
18	Outlin	e Dimension	16
19	Footp	rint Information	17
20	Packir	ng Information	18
	20.1	Tape and Reel Data	18
	20.2	Tape and Reel Packing	19
	20.3	Packing Material Anti-ESD Property	20
21	Datas	heet Revision History	21

7 Pin Configuration



WDFN-10L 3x3

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1, 2	VIN	Power input of the device.
9, 10	VOUT	Regulated output voltage. A minimum of $2.2\mu\text{F}$ capacitor should be placed directly at this pin.
3	PG	Power-good indicator. An open-drain, active-high output that indicates the status of VOUT. A pull-up resistor from $10k\Omega$ to $1M\Omega$ should be connected from this pin to a supply of up to 5.5V.
4	VBIAS	Bias input pin. Provides input voltage for internal control circuitry.
5	EN	Chip enable (Active-High). Pulling this pin below 0.4V turns the regulator off, reducing the quiescent current to a fraction of its operating value. Connect to VIN if not used.
6, 11 (Exposed Pad)	GND	Ground. The Exposed Pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
7	SS	Connect a capacitor between this pin and the ground to set the soft-start ramp time of the output voltage.
8	FB	Feedback pin. Connect this pin to an external voltage divider to set the output voltage.

9 Functional Block Diagram

10 Absolute Maximum Ratings

(Note 2)

• Supply Input Voltage, VIN	-0.3V to 6V
• Other Pins	-0.3V to 6V
• Output Voltage, VOUT	-0.3V to 6.3V
• Lead Temperature (Soldering, 10 sec.)	260°C
• Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C

Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

11 ESD Ratings

(Note 3)

 ESD Susceptibility HBM (Human Body Model) ----- 2Kv

Note 3. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(Note 4)

•	Supply Input Voltage, VIN	0.8V to 5.5V
,	Junction Temperature Range	-40°C to 125°C
	• Ambient Temperature Range	–40°C to 125°C

Note 4. The device is not guaranteed to function outside its operating conditions.

13 Thermal Information

(Note 5 and Note 6)

	Thermal Parameter	WDFN-10L 3x3	Unit	
θЈА	Junction-to-ambient thermal resistance (JEDEC standard)	40.4	°C/W	
θJC(Top)	Junction-to-case (top) thermal resistance	70.4	°C/W	
θ JC(Bottom)	Junction-to-case (bottom) thermal resistance	tion-to-case (bottom) thermal resistance 13.6		
θ JA(EVB)	A(EVB) Junction-to-ambient thermal resistance (specific EVB)		°C/W	
Ψ ЈС(Тор)	Junction-to-top characterization parameter	1.5	°C/W	
ΨЈВ	Junction-to-board characterization parameter	25.2	°C/W	

Note 5. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, AN061.

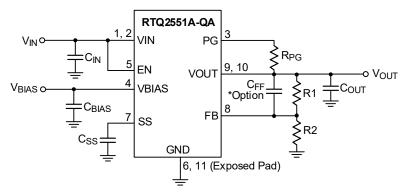
Note 6.θ JA(EVB), ΨJC(TOP), and ΨJB are measured on a high effective-thermal-conductivity four-layer test board which is in size of 70mm x 50mm; furthermore, all layers with 1 oz. Cu. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

RTQ2551A-QA DS-01 September 2024

14 Electrical Characteristics

 $(V_{EN} = 1.1V, V_{IN} = V_{OUT} + 0.3V, V_{BIAS} = 5V, C_{BIAS} = 0.1 \mu F, C_{IN} = C_{OUT} = 10 \mu F, C_{SS} = 1 n F, I_{OUT} = 50 m A, T_{J} = -40 ^{\circ} C \ to \ 125 ^{\circ} C, T_{OUT} = 10 \mu F, T_{OUT} = 10 \mu$ otherwise specified. Typical values are at T_A = 25°C.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input Voltage	Vin		Vout + Vdrop		5.5	V	
VBIAS Pin Voltage	VBIAS		2.7		5.5	V	
Reference Voltage	VREF	T _A = 25°C	0.796	0.8	0.804	V	
Output Voltage Range	Vout	VIN = 5V, IOUT = 1A	VREF		3.6	V	
Output Voltage Accuracy	Vout_acc	2.97V ≤ VBIAS ≤ 5.5V, 50mA ≤ IOUT ≤ 1A	-1	±0.5	1	%	
Line Regulation	VLINE_REG	VOUT (Normal) + $0.3 \le V_{IN} \le 5.5V$		0.03		%/V	
Load regulation	VLOAD_REG	50mA ≤ IOUT ≤ 1A		0.09		%/A	
VIN Dropout Voltage	VVIN_DROP	IOUT = 1A, VBIAS - VOUT (Normal) ≥ 3.25V		50	80	mV	
VBIAS Dropout Voltage	Works BROD	IOUT = 1A, VIN = VBIAS			1.2	V	
VBIAS Diopout Voltage	VVBIAS_DROP	IOUT = 0.5A, VIN = VBIAS			1.1	V	
Current Limit	ILIM	Vout = 80% × Vout (Normal)		1.6		Α	
Bias Pin Current	IBIAS			1	2	mA	
Shutdown Supply Current (IGND)	ISHDN	VEN = 0.4V		1	50	μА	
Feedback Pin Current	IFB		-1	0.15	1	μА	
Power-Supply Rejection		1kHz, Iout = 0.5A, VIN = 1.8V, Vout = 1.5V		75		dB	
(VIN to VOUT)	PSRR	300kHz, I _{OUT} = 0.5A, V _{IN} = 1.8V, V _{OUT} = 1.5V		30		QD.	
Power-Supply Rejection	(<u>Note 7</u>)	1kHz, I _{OUT} = 0.5A, V _{IN} = 1.8V, V _{OUT} = 1.5V		90		٩D	
(VBIAS to VOUT)		300kHz, I _{OUT} = 0.5A, V _{IN} = 1.8V, V _{OUT} = 1.5V		40		– dB	
Output Noise Voltage	Vn (Note 7)	100Hz to 100kHz, IOUT = 0.5A, Css = 1nF		25 x Vout		μVRMS	
Minimum Startup Time	tstr (Note 7)	RLOAD for IOUT = 1A, Css = open		200		μS	
Soft-Start Charging Current	Iss	Vss = 0.4V		440		nA	
EN Input Voltage Rising Threshold	VEN_R		1.1		5.5	V	
EN Input Voltage Falling Threshold	VEN_F		0		0.4	V	
EN Pin Hysteresis	VEN_HYS			50		mV	
EN Pin Deglitch Time	VEN_DG			20		μs	
EN Pin Current	IEN	VEN = 5V		0.1	1	μΑ	
Power-Good Voltage Threshold	VPG	Vout decreasing	86	91	95	%Vоит	



Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power-Good Voltage Hysteresis	VPG_HYS			3		%Vouт
Power-Good Output Low Voltage	VPG_L	IPG = 1mA(sinking), VOUT < VPG			0.3	٧
Power-Good Leakage Current	VPG_LK	VPG = 5.25V, VOUT > VPG		0.1	1	μА
Over-Temperature	Тотр	Shutdown, temperature increasing	-	165	I	°C
Protection Threshold		Reset, temperature decreasing		140	-	
Discharge Resistor	RDISCHG	VEN ≤ 0.4V		10		Ω

Note 7. Guaranteed by design.

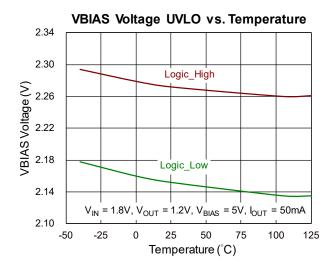
15 Typical Application Circuit

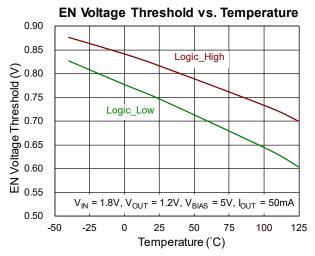
^{*:} The feedforward capacitor is optional for the transient response and circuit stability improvement.

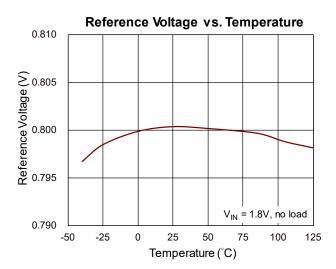
Table 1. Suggested Component Value

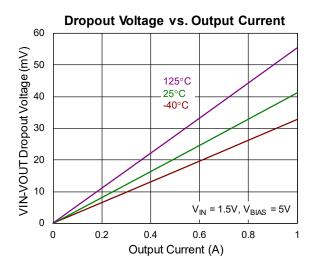
Vout(V)	R1(kΩ)	R2(kΩ)
0.8	Short	Open
0.9	0.619	4.99
1.0	1.13	4.52
1.05	1.37	4.42
1.1	1.87	4.99
1.2	2.49	4.99
1.5	4.12	4.75
1.8	3.57	2.87
2.5	3.57	1.69
3.3	3.57	1.15

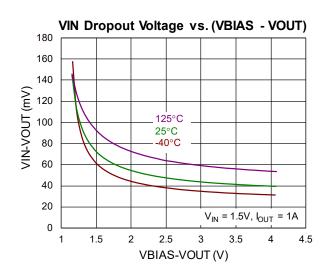
Table 2.. Recommended External Components

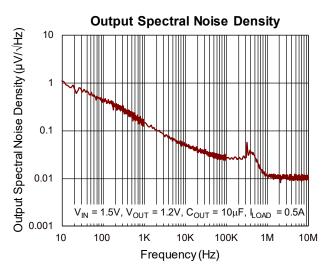

Component	Description	Vendor P/N
C _{IN} , C _{OUT} (Note 8)	10μF, 16V, X7S, 0805	GCM21BC71C106KE36 (Murata)
Css	1nF, 50V, X7R, 0603	GCD188R71H102KA01 (Murata)
CBIAS	0.1μF, 50V, X7R, 0603	GCJ188R71H104KA12 (Murata)

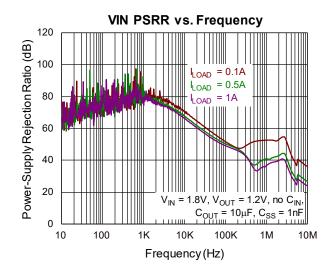

Note 8. Considering the effective capacitance derated with biased voltage level, the C_{OUT} component needs satisfy the effective capacitance at least 2.2 µF or above at targeted output level for stable and normal operation.

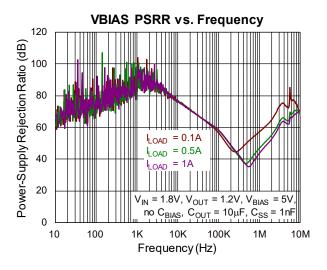

September 2024

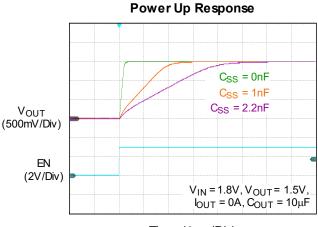


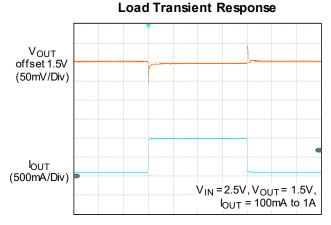

16 Typical Operating Characteristics










September 2024

Time (1ms/Div)

Time (50µs/Div)

17 Operation

The RTQ2551A-QA is a very low dropout linear regulator that operates from an input voltage as low as 0.8V. It provides a highly accurate output that is capable of supplying 1A of output current with a typical dropout voltage of only 50mV. The output voltage range is from 0.8V to 3.6V.

17.1 VIN and VBIAS Supply

The VBIAS input supplies the internal reference and LDO circuitry while all output current comes directly from the VIN input for high-efficiency regulation. With an external VBIAS 3.25V above VOUT, the RTQ2551A-QA offers very low dropout performance, which allows the device to be used in place of a DC-DC converter and still achieves good efficiency. This provides designers to achieve the smallest, simplest, and lowest-cost solution.

For applications where an auxiliary bias voltage is not available or low dropout is not required. In these applications, VBIAS is suggested to be 1.2V above Vout and attention to power rating and thermal management is needed.

17.2 Enable and Shutdown

The EN pin is active high. Applying a voltage above 1.1V ensures the LDO regulator turns on, while the regulator turns off if the VEN falls below 0.4V. The enable circuitry has a typical 50mV hysteresis and deglitching for use with relatively slowly ramping analog signals. That helps avoid on-off cycling as a result of small glitches in the VEN signal. A fast rise-time signal must be used to enable the RTQ2551A-QA if precise turn-on timing is required. If not used, EN can be connected to either the VIN or VBIAS pins. If EN is connected to the VIN pin, it should be connected as close as possible to the largest capacitance on the input to prevent voltage droops on that line from triggering the enable circuit.

17.3 Output Active Discharge

When the RTQ2551AN-QABB operates at shutdown mode, the device has an internal active pull-down circuit that connects the output to GND through a 10Ω resistor for output discharge purpose.

17.4 Soft-Start

The RTQ2551A-QA includes a soft-start feature to prevent excessive current flow during start-up. When the LDO is enabled, an internal soft-start current (Iss) charges the external soft-start capacitor (Css) to build a ramp-up voltage internally. The RTQ2551A-QA achieves a linear and monotonic soft-start by tracking the voltage ramp until the voltage exceeds the internal reference. The soft-start ramp time can be calculated using the following equation:

$$t_{SS}(ms) = \frac{V_{REF} \times C_{SS}}{I_{SS}} = \frac{0.8V \times C_{SS}(nF)}{0.44\mu A}$$

17.5 Power-Good Indicator

When the output voltage is greater than VPG + VPG_HYS, the output voltage is considered good, and the open-drain PG pin goes high impedance and is typically pulled high with an external resistor. If Vout drops below VPG or if VBIAS drops below 1.9 V, the open-drain output turns on and pulls the PG output low. The PG pin also asserts when the device is disabled, or when OCP or OTP is triggered.

17.6 Overcurrent Protection

The RTQ2551A-QA has built-in overcurrent protection. When overcurrent (typically 1.6A) is detected, the RTQ2551A-QA foldbacks and limits the current at typically 1.2A. It allows the device to supply surges of up to 1.6A and prevents the device overheating if a short circuit occurs.

RICHTEK is a regis

RTQ2551A-QA

17.7 Over-Temperature Protection

The RTQ2551A-QA includes an over-temperature protection (OTP) circuitry to prevent overheating due to excessive power dissipation. The LDO will shut down when the junction temperature exceeds approximately 165°C. It will re-enable the LDO once the junction temperature drops back to approximately 140°C. The RTQ2551A-QA will cycle in and out of thermal shutdown without latch-up or damage until the overstress condition is removed. Long-term overstress (TJ > 125°C) should be avoided as it can degrade the performance or shorten the life of the part.

Note that the over-temperature protection is intended to protect the device during momentary overload conditions. The protection is activated outside the absolute maximum range of operation as a secondary fail-safe and therefore should not be relied upon operationally. Continuous operation above the specified absolute maximum operating junction temperature may impair device reliability or permanently damage the device.

www.richtek.com

18 Application Information

(Note 9)

The RTQ2551A-QA is a low dropout regulator that features soft-start capability. It provides EN and PG for easily system sequence control, and built-in overcurrent and over-temperature protection for safe operation.

18.1 Dropout Voltage

Because of two power supply inputs, VIN and VBIAS, and one VOUT regulator output, there are two specified dropout voltages. The first is the VIN dropout voltage, which is the voltage difference (VIN - VOUT) when VOUT starts to decrease by percentage specified in the Electrical Characteristics table.

The second is the VBIAS dropout voltage, which is the voltage difference (VBIAS - VOUT) when the VIN and VBIAS pins are joined together and Vout starts to decrease. This option allows the device to be used in applications where an auxiliary bias voltage is not available or low dropout is not required. In these applications, VBIAS is suggested to be 1.2V above Vout and attention to power rating and thermal considerations is needed.

18.2 Input, Output, and Bias Capacitor Selection

The device is designed to be stable for all available types and values of output capacitors $\geq 2.2\mu F$. The device is also stable with multiple capacitors in parallel, which can be of any type or value. The capacitance required on the VIN and VBIAS pins strongly depends on the input supply source impedance. To counteract any inductance in the input, the minimum recommended capacitor for VIN is 1μF and the minimum recommended capacitor for VBIAS is 0.1μF. If the VIN and VBIAS pins are connected to the same supply, the recommended minimum capacitor for VBIAS is 4.7μF. Good quality, low ESR capacitors should be used on the input; ceramic X5R and X7R capacitors are preferred. These capacitors should be placed as close to the pins as possible for optimum performance.

18.3 Adjustable Output Voltage

The output voltage of the RTQ2551A-QA is adjustable from 0.8V to 3.6V using external voltage divider resisters, as shown in Typical Application Circuit. R1 and R2 can be calculated to set the desired output voltage. To achieve the maximum accuracy specifications, R2 should be $\leq 4.99 k\Omega$.

18.4 Power Up Sequence Requirement

The RTQ2551A-QA supports powering on the input VIN, VBIAS, and EN pins in any order without damaging the device. Generally, connecting the EN and VIN pins for most applications is acceptable, as long as VIN and VEN are greater than the EN threshold (typically 1.1V) and the input ramp rate of V_{IN} and V_{BIAS} is faster than the output settled soft-start ramp rate. If the VIN/VBIAS input source ramp rate is slower than the output settled soft-start time, the output will track the input supply rampup level minus the dropout voltage until it reaches the settled output voltage level. For the other case, if EN is connected with the VBIAS pin, and the provided VIN is present before VBIAS, the output soft-start will proceed as programmed. While VBIAS and VEN are present before VIN is applied and the settled soft-start time has expired, then Vout tracks the Vin ramp-up. If the soft-start time has not expired, the output tracks the V_{IN} ramp-up until the output reaches the value set by the charging soft-start capacitor.

September 2024

18.5 Thermal Consideration

The junction temperature should never exceed the absolute maximum junction temperature T_{J(MAX)}, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$$PD(MAX) = (TJ(MAX) - TA) / \theta JA$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, $\theta_{JA(EVB)}$, is highly package dependent. For a WDFN-10L 3x3 package, the thermal resistance, $\theta_{JA(EVB)}$, is 41.5°C /W on a high effective-thermal-conductivity four- layer test board. The maximum power dissipation at T_A = 25°C can be calculated as below:

$$P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (41.5^{\circ}C/W) = 2.41W$$
 for a WDFN-10L 3x3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, $\theta_{JA(EVB)}$. The derating curve in <u>Figure 1</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

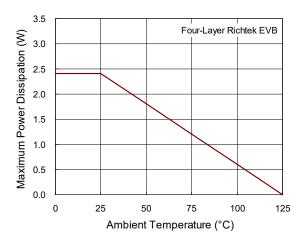


Figure 1. Derating Curve of Maximum Power Dissipation

18.6 Layout Considerations

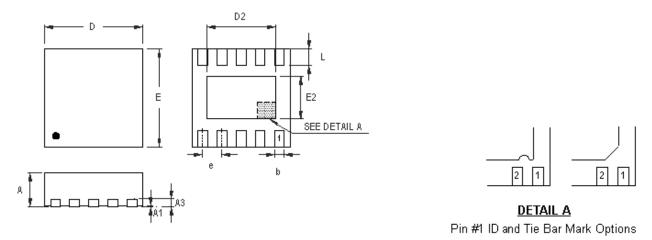
For best performance of the RTQ2551A-QA, the following PCB layout suggestions are highly recommended:

- The input capacitor must be placed as close as possible to the IC to minimize the power loop area.
- Minimize the power trace length and avoid using vias for the input and output capacitors connection.

<u>Figure 2</u> shows an example for the layout reference that helps minimize inductive parasitic components, reduce load transients, and ensure good circuit stability.

wider for thermal considerations. **GND** Plane V_{OUT} Plane V_{IN} Plane PG reference Cout 0 source input VIN VIN 10 9 VOUT VOUT Ö PG FB VBIAS 4. SS Enable signal **O** [6] GND R2 input Css C_{BIAS} 0 **GND Plane** Add vias for thermal consideration

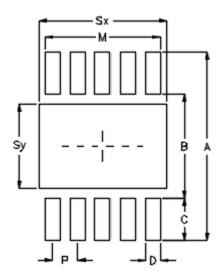
The GND layout trace should be


Figure 2. PCB Layout Guide

Note 9. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

September 2024

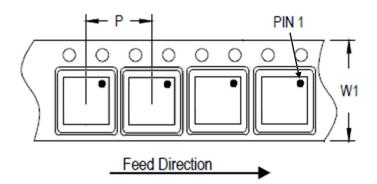
19 Outline Dimension

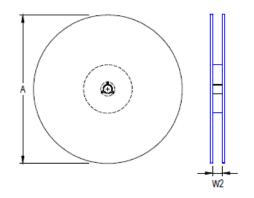

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

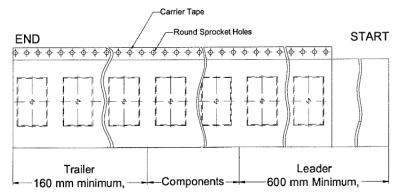
Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175 0.250		0.007	0.010		
b	0.180	0.300	0.007	0.012 0.120		
D	2.950	3.050	0.116			
D2	2.300	2.650	0.091	0.104		
Е	2.950 3.050	0.116	0.120			
E2	1.500	1.750	0.059	0.069		
е	0.5	500	0.0)20		
L	0.350	0.450	0.014	0.018		

W-Type 10L DFN 3x3 Package

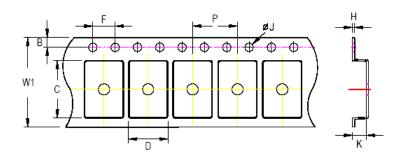
20 Footprint Information




Dookogo	Number of		Footprint Dimension (mm)							Tolerance
Package	Pin	Р	Α	В	С	D	Sx	Sy	М	
V/W/U/X/ZDFN3*3-10	10	0.50	3.80	2.10	0.85	0.30	2.55	1.70	2.30	±0.05



21 Packing Information


21.1 Tape and Reel Data

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Size (A) (mm) (in)		Units per Reel	Trailer (mm)	Leader (mm)	Reel Width (W2) Min./Max. (mm)
QFN/DFN 3x3	12	8	180	7	1,500	160	600	12.4/14.4

- C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:
- For 12mm carrier tape: 0.5mm max.

Tape Size	W1	Р		В		F		Ø٦		Н
Tape Size	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

21.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
	TOG! /		o recis per miler box box A
2	MERCHANDER MARKET SECOND MARKET SE	5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3	RECTIFICATION AND ADDRESS OF THE PARTY OF TH	6	RICHTEK 127400000
	Caution label is on backside of Al bag		Outer box Carton A

Container	Re	eel		Вох		Carton		
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit
OEN/DEN 0: 0	OEN/DEN 3v3 7"	4.500	Box A	3	4,500	Carton A	12	54,000
QFN/DFN 3x3	7"	1,500	Box E	1	1,500	For Cor	nbined or Partial l	Reel.

RTQ2551A-QA_DS-01 September 2024

21.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm ²	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

22 Datasheet Revision History

Version	Date	Description	Item
00	2024/1/8	Final	Features on page 1 General Description on page 1 Recommended Operating Conditions on page 6 Electrical Characteristics on page 7
01	2024/9/26	Modify	Changed the names of pin 3 to PG Ordering Information on page 2 - Added RTQ2551AN-QABB Marking Information on page 2 - Added RTQ2551AN-QABB Electrical Characteristics on page 6, 7 Operation on page 11 Application Information on page 13, 15