
RTQ2516

2A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable

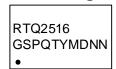
1 General Description

The RTQ2516 is a high performance positive voltage regulator designed for use in applications requiring ultra- low input voltage and ultra-low dropout voltage at up to 2 amperes. It operates with an input voltage as low as 1.4V, with output voltage programmable as low as 0.5V. The RTQ2516 features ultra low dropout, ideal for applications where output voltage is very close to input voltage. Additionally, the RTQ2516 has an enable pin to further reduce power dissipation while shutdown. The RTQ2516 provides excellent regulation over variations in line, load and temperature. The RTQ2516 is available in the SOP-8 (Exposed Pad) package. The output voltage can be set by an external divider depending on how the FB pin is configured. The recommended junction temperature range is -40°C to 125°C.

2 Ordering Information

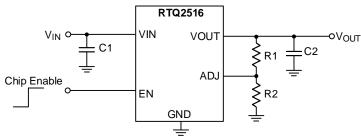
Note 1

- Marked with ⁽¹⁾ indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽²⁾ indicated: Richtek products are Richtek Green Policy compliant.


3 Features

- AEC-Q100 Grade 2 Qualified
- Input Voltage as Low as 1.4V
- Ultra-Low Dropout Voltage 400mV at 2A
- Overcurrent Protection
- Over-Temperature Protection
- 1µA Input Current in Shutdown Mode
- Enable Control

4 Applications


- Telecom/Networking Cards
- Motherboards/Peripheral Cards
- Industrial Applications
- Wireless Infrastructure
- Set Top Box
- Medical Equipment
- Notebook Computers
- Battery Powered Systems

5 Marking Information

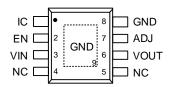
RTQ2516GSPQT: Product Code YMDNN: Date Code

6 Simplified Application Circuit

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK

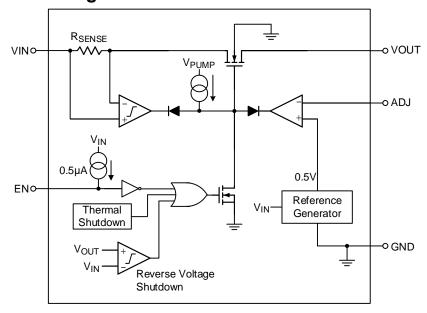
is a registered trademark of Richtek Technology Corporation.


Table of Contents

1	General Description1		17.2	Output Undervoltage Protection (UVP)	
2	Ordering Information1			and Over- Current Fold-Back	9
3	Features1		17.3	Soft-Start	9
4	Applications 1		17.4	Over-Temperature Protection (OTP)	9
5	Marking Information1	18	Appli	cation Information	10
6	Simplified Application Circuit1		18.1	Output Voltage Setting	10
7	Pin Configuration3		18.2	Chip Enable Operation	10
8	Functional Pin Description3		18.3	Current Limit	
9	Functional Block Diagram3		18.4	CIN and COUT Selection	
10	Absolute Maximum Ratings4		18.5	Thermal Considerations	10
11	ESD Ratings4	19	Outlir	ne Dimension	12
12	Recommended Operating Conditions4	20	Footp	orint Information	13
13	Thermal Information4	21	Packi	ng Information	
14	Electrical Characteristics5		21.1	Tape and Reel Data	
15	Typical Application Circuit6		21.2	Tape and Reel Packing	15
16	Typical Operating Characteristics7		21.3	Packing Material Anti-ESD Property	16
17	Operation9	22	Datas	heet Revision History	17
	17.1 Reverse Current Protection 9				

7 Pin Configuration

(TOP VIEW)



SOP-8 (Exposed Pad)

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1	IC	Internal connection. Keep this pin floating for normal operation.
4, 5	NC	No internal connection.
2	EN	Chip enable (Active-High). Pulling this pin below 0.4V to turn the regulator off. The device will be enabled if this pin is left open. Connect to VIN for controlling by VIN.
3	VIN	Power input. For regulation at full load, the input to this pin must be between (Vout + 0.5V) and 6V. Minimum input voltage is 1.4V. A large bulk capacitance should be placed closely to this pin to ensure that the input supply does not sag below 1.4V. A minimum of $10\mu F$ ceramic capacitor should be placed directly at this pin.
6	VOUT	LDO output pin. Connect a ceramic capacitor with an capacitance of at least $10\mu F$ as close as possible from this pin to GND to minimize the input impedance.
7	ADJ	Feedback voltage input. This pin is used to set the output voltage via an external resistive voltage divider. The feedback reference voltage is 0.5V (typical). Place the resistive voltage divider as close to the FB pin as possible. Do not leave this pin floating.
8, 9 (Exposed pad)	GND	Ground. This pin must be soldered to a large PCB copper area for maximum power dissipation.

9 Functional Block Diagram

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered tr

is a registered trademark of Richtek Technology Corporation.

10 Absolute Maximum Ratings

(Note 2)

- Supply Voltage, VIN------ -0.3V to 7V • Other Pins ------ -0.3V to 7V • Lead Temperature (Soldering, 10 sec.) ------ 260°C • Junction Temperature ------ 150°C
- Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

11 ESD Ratings

(Note 3)

- ESD Susceptibility

Note 3. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(Note 4)

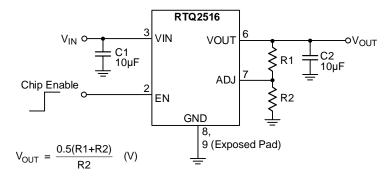
- Supply Input Voltage, VIN ------ 1.4V to 6V • Junction Temperature Range----- --- -40°C to 125°C
- Note 4. Recommended operating conditions indicate conditions for which the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications, see the Electrical Characteristics table.

13 Thermal Information

(Note 5 and Note 6)

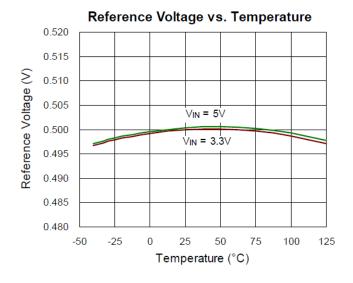
	Thermal Parameter	SOP-8 (Exposed Pad)	Unit
θЈА	Junction-to-ambient thermal resistance (JEDEC standard)	40.1	°C/W
θ JC(Top)	Junction-to-case (top) thermal resistance	63	°C/W
θ JC(Bottom)	Junction-to-case (bottom) thermal resistance	4.5	°C/W
θJA(EVB)	Junction-to-ambient thermal resistance (specific EVB)	51.2	°C/W
ΨJC(Top)	Junction-to-top characterization parameter	10.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	32	°C/W

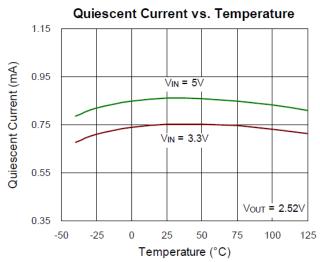
- Note 5. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report,
- Note 6. θJA(EVB), ΨJC(TOP), and ΨJB are measured on a high effective-thermal-conductivity two-layer test board which is in size of 70mm x 50mm; furthermore, all layers with 1 oz. Cu. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

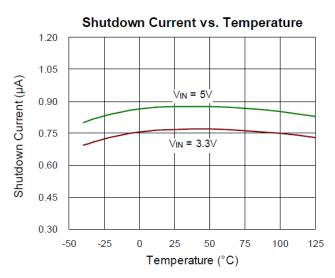

14 Electrical Characteristics

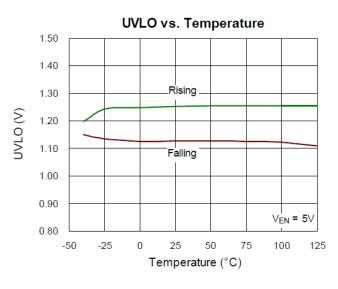
(V_{IN} = 1.4V to 6V, I_{OUT} = 10 μA to 2A, V_{ADJ} = V_{OUT} , $-40^{\circ}C \le T_A \le 105^{\circ}C$, unless otherwise specified)

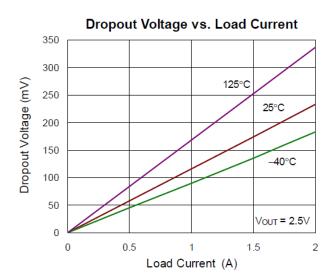
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
Quiescent Current	IQ	VIN = 3.3V, IOUT = 0A		0.7	1.5	mA		
Shutdown Current	ISHDN	VIN = 6V, VEN = 0V		1.5	10	μΑ		
Line Regulation	VLINE_REG	IOUT = 10mA		0.2	0.4	%/V		
Load Regulation	VLOAD_REG	IOUT = 10mA to 2A		0.5	1.5	%		
		I _{OUT} = 1A, V _{IN} ≥ 1.6V		120	200			
		IOUT = 1A, 1.4V < VIN < 1.6V			400			
Dropout Voltage	VDROP	IOUT = 1.5A, VIN ≥ 1.6V		180	300	mV		
Dropout Voltage	VDROP	IOUT = 1.5A, 1.4V < VIN < 1.6V			500	IIIV		
		IOUT = 2A, VIN ≥ 1.6V		240	400			
		I _{OUT} = 2A, 1.4V < V _{IN} < 1.6V			600			
Current Limit	ILIM	V _{IN} = 3.3V	2.3	3	4.4	Α		
Feedback								
ADJ Reference Voltage	Voca	VIN = 3.3V, VADJ = VOUT, IOUT = 10mA, TA = 25°C	0.495		0.505	V		
ADJ Reference voltage	VREF	VIN = 3.3V, VADJ = VOUT, IOUT = 10mA	0.4925		0.5075	1 V		
ADJ Pin Current	IADJ	V _{ADJ} = 0.5V		20	200	nA		
Enable								
EN Pin Current	IEN	V _{EN} = 0V, V _{IN} = 6V		1	10	μА		
EN Input Voltage Rising Threshold	VEN_R	VIN = 3.3V	1.6			V		
EN Input Voltage Falling Threshold	VEN_F	V _{IN} = 3.3V			0.4	V		
Over-Temperature Prote	ection							
OTP Trip Level	Тотр	Threshold		160		°C		
Hysteresis	Totp_hys	Hysteresis		30		°C		

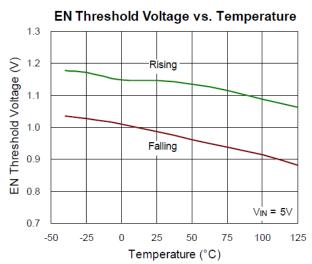


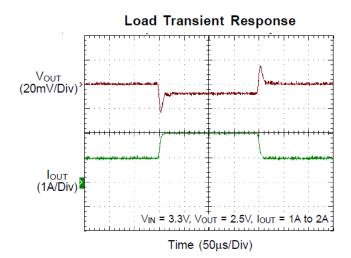

15 Typical Application Circuit

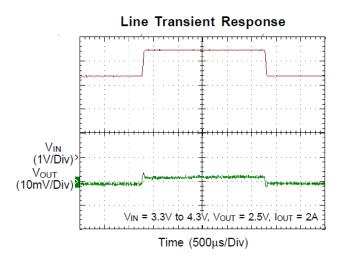


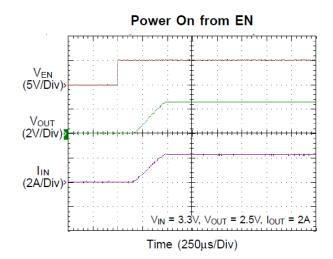


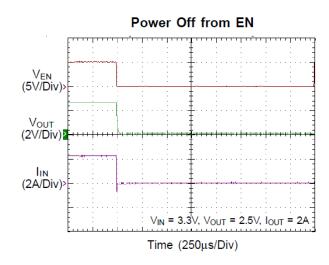

16 Typical Operating Characteristics

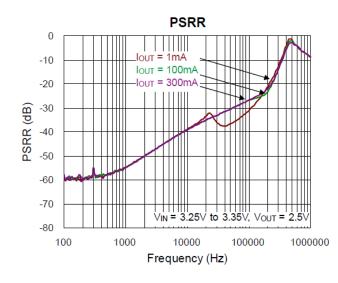









Copyright © 2024 Richtek Technology Corporation. All rights reserved.





www.richtek.com

17 Operation

The RTQ2516 is a low input voltage, low dropout LDO that can support an input voltage range from 1.4V to 6V and an output current of up to 2A. The RTQ2516 uses an internal charge pump to achieve low input voltage operation, and the internal compensation network is well designed to achieve fast transient response with good stability. In steady-state operation, the feedback voltage is regulated to the reference voltage by the internal regulator. When the feedback voltage signal is less than the reference, the on-resistance of the power MOSFET is decreased to increase the output current through the power MOSFET, and the feedback voltage will charge back to the reference. If the feedback voltage is greater than the reference, the power MOSFET current is decreased to make the output voltage discharge back to the reference by the loading current.

17.1 Reverse Current Protection

The reverse current protection is guaranteed by the N-MOSFET with bulk capacitors connected to GND and the internal circuit. The reverse voltage detection circuit shuts the entire loop down if the output voltage is higher than the input voltage.

17.2 Output Undervoltage Protection (UVP) and Over- Current Fold-Back

When the feedback voltage is lower than 0.15V after the internal soft-start ends, the UVP is triggered. If the overcurrent condition is triggered during the UVP state, the OC limit current will be decreased to limit the output power and change into the re-soft-start state at the same time.

17.3 Soft-Start

An internal current source charges an internal capacitor to build the soft-start ramp voltage. During the soft-start state, the output current will be limited to prevent inrush current.

17.4 Over-Temperature Protection (OTP)

The RTQ2516 includes over-temperature protection (OTP) circuitry to prevent overheating. When the junction temperature exceeds the OTP threshold (TOTP), the device is disabled. It will automatically resume normal operation once the junction temperature decreases by the amount of OTP hysteresis (TOTP_HYS). Additionally, continuous operation at or into thermal shutdown, or maintaining a junction temperature above 125°C may diminish the reliability of the RTQ2516.

Note that the over-temperature protection is designed to protect the device during temporary overload conditions. It serves as a secondary fail-safe mechanism and is activated when operating conditions exceed the absolute maximum range. It should not be used as a substitute for proper thermal design in normal operation. Continuously operating the device above the specified absolute maximum junction temperature compromise device reliability or result in permanent damage.

18 Application Information

(Note 7)

The RTQ2516 is a low voltage, low dropout linear regulator. It supports an input voltage range from 1.4V to 6V and an adjustable output voltage from 0.5V to (VIN – VDROP).

18.1 Output Voltage Setting

The RTQ2516 output voltage is adjustable from 0.5V to (VIN - VDROP) via the external resistive voltage divider. The voltage divider resistors can have values of up to $800 \text{k}\Omega$ because of the very high impedance and low bias current of the sense comparator. The output voltage is set according to the following equation:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right)$$

where VREF is the reference voltage with a typical value of 0.5V.

18.2 Chip Enable Operation

The RTQ2516 goes into sleep mode when the EN pin is in a logic low condition. In this condition, the pass transistor, error amplifier, and bandgap are all turned off, reducing the supply current to only 10μ A (max.). The EN pin can be directly tied to VIN to keep the part on.

18.3 Current Limit

The RTQ2516 contains an independent current limit circuitry, which monitors and controls the pass transistor's gate voltage, limiting the output current to 3A (typ.).

18.4 CIN and COUT Selection

The RTQ2516 is designed specifically to work with low ESR ceramic output capacitors for space saving and performance considerations. Using a ceramic capacitor with a capacitance range from $10\mu\text{F}$ to $47\mu\text{F}$ on the output ensures stability. Input capacitance is selected to minimize transient input droop during load current steps. For general applications, an input capacitor with a value of $10\mu\text{F}$ is recommended to minimize input impedance and provide the desired effect without affecting stability.

18.5 Thermal Considerations

Thermal protection limits power dissipation in the RTQ2516. When the operating junction temperature exceeds 160°C, the OTP circuit starts the thermal shutdown function and turns the pass element off. The pass element turns on again after the junction temperature cools by 30°C. The RTQ2516 output voltage will be close to zero when an output short circuit occurs, as shown in Figure 1. This can reduce the IC temperature and provide maximum safety to end users when an output short circuit occurs.

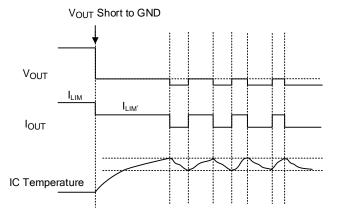


Figure 1. Short Circuit Protection when Output Short Circuit Occurs

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

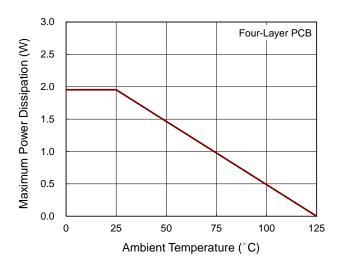
 $PD(MAX) = (TJ(MAX) - TA) / \theta JA$

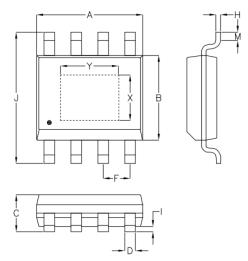
where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, $\theta_{JA(EVB)}$, is highly package dependent. For a SOP-8 package, the thermal resistance, $\theta_{JA(EVB)}$, is 51.2°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below:

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (51.2^{\circ}C/W) = 1.95W$ for a SOP-8 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, $\theta_{JA(EVB)}$. The derating curves in <u>Figure 2</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

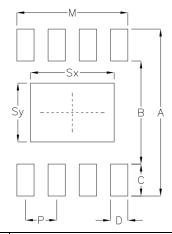



Figure 2. Derating Curve of Maximum

Note 7. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

RICHTEK is a registered trademark of Richtek Technology Corporation.

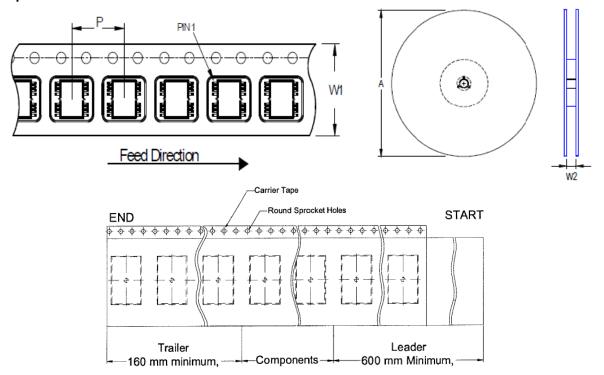
19 Outline Dimension



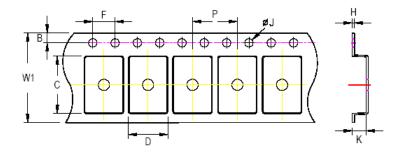
O la	-1	Dimens	sions In	Dimension	s In Inches	
Symb	101	Min	Max	Min	Max	
А		4.801	5.004	0.189	0.197	
В		3.810	4.000	0.150	0.157	
С		1.346	1.753	0.053	0.069	
D		0.330	0.510	0.013	0.020	
F		1.194	1.346	0.047	0.053	
Н		0.170	0.254	0.007	0.010	
I		0.000	0.152	0.000	0.006	
J		5.791	6.200	0.228	0.244	
М		0.406	1.270	0.016	0.050	
Ontion	Χ	2.100	2.500	0.083	0.098	
Option 2	Υ	3.000	3.500	0.118	0.138	

8-Lead SOP (Exposed Pad) Plastic Package

20 Footprint Information



Pools	,000	Number of Pin	Footprint Dimension (mm)								Tolerance
Pack	age	Number of Pin	Р	Α	В	С	D	Sx	Sy	М	
PSOP-8	Option1	Ω	1.27	6 90	4.20	1.30	0.70	2.30	2.30	4.51	±0.10
P30P-6	Option2	0	1.27	6.80				3.40	2.40		



21 Packing Information

21.1 Tape and Reel Data

Ded to Too	Tape Size	Pocket Pitch	et Pitch Reel Size (Units	Trailer	Leader	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)	
PSOP-8	12	8	330	13	2,500	160	600	12.4/14.4	

- C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:
- For 12mm carrier tape: 0.5mm max.

Tape Size	W1	F)	В		F		Ø٦		Н
Tapo Oizo	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

21.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 13"	4	1 reel per inner box Box G
2	HIC & Desiccant (2 Unit) inside	5	6 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	Reel		Вох			Carton		
Package	Size	Units	Item	Reels	Units	Item	Boxes	Units
PSOP-8	13"	2,500	Box G	1	2,500	Carton A	6	15,000

21.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm 2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

22 Datasheet Revision History

Version	Date	Description	Item
			General Description on P1
			Ordering Information on P1
			Functional Pin Description on P4
00	2024/6/17	Modify	Absolute Maximum Ratings on P5
			Thermal Information on P5
			Operation on P10
			Packing Information on P15, P16, P17